Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Solution: recursion用一个整数来做返回值,0或者正数表示树的深度,-1表示此树已经不平衡了。
如果已经不平衡,则递归一直返回-1即可。
否则就利用返回的深度信息看看左右子树是不是违反平衡条件,如果违反返回-1。
否则返回左右子树深度大的加一作为自己的深度即可。
Run time complexity is O(n), space complexity is stack space O(logn).
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isBalanced(TreeNode root) { return helper(root) >= 0; } public int helper(TreeNode root) { if(root == null) return 0; int left = helper(root.left); int right = helper(root.right); //如果不balance,会返回-1,所以只要left或者right小于0,就说明不balance了。 //balance的话会返回深度,一定是一个正数。 if(left < 0 || right < 0) { return -1; } if(Math.abs(left - right) > 1) { return -1; } return Math.max(left, right) + 1; } }
Reference:http://blog.csdn.net/linhuanmars/article/details/23731355
Or
Or
/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public boolean isBalanced(TreeNode root) { if(root == null) return true; int depthL = getDepth(root.left); int depthR = getDepth(root.right); if(Math.abs(depthL - depthR) > 1) { return false; }else { boolean balancedL = isBalanced(root.left); boolean balancedR = isBalanced(root.right); return balancedL && balancedR; } } public int getDepth(TreeNode root) { if(root == null) return 0; return Math.max(getDepth(root.left), getDepth(root.right)) + 1; } }
No comments:
Post a Comment