Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Solution: recursion用一个整数来做返回值,0或者正数表示树的深度,-1表示此树已经不平衡了。
如果已经不平衡,则递归一直返回-1即可。
否则就利用返回的深度信息看看左右子树是不是违反平衡条件,如果违反返回-1。
否则返回左右子树深度大的加一作为自己的深度即可。
Run time complexity is O(n), space complexity is stack space O(logn).
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
return helper(root) >= 0;
}
public int helper(TreeNode root) {
if(root == null)
return 0;
int left = helper(root.left);
int right = helper(root.right);
//如果不balance,会返回-1,所以只要left或者right小于0,就说明不balance了。
//balance的话会返回深度,一定是一个正数。
if(left < 0 || right < 0) {
return -1;
}
if(Math.abs(left - right) > 1) {
return -1;
}
return Math.max(left, right) + 1;
}
}
Reference:http://blog.csdn.net/linhuanmars/article/details/23731355
Or
Or
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null)
return true;
int depthL = getDepth(root.left);
int depthR = getDepth(root.right);
if(Math.abs(depthL - depthR) > 1) {
return false;
}else {
boolean balancedL = isBalanced(root.left);
boolean balancedR = isBalanced(root.right);
return balancedL && balancedR;
}
}
public int getDepth(TreeNode root) {
if(root == null)
return 0;
return Math.max(getDepth(root.left), getDepth(root.right)) + 1;
}
}
No comments:
Post a Comment