Friday, December 4, 2015

Flip Game II

You are playing the following Flip Game with your friend: Given a string that contains only these two characters: + and -, you and your friend take turns to flip twoconsecutive "++" into "--". The game ends when a person can no longer make a move and therefore the other person will be the winner.
Write a function to determine if the starting player can guarantee a win.
For example, given s = "++++", return true. The starting player can guarantee a win by flipping the middle "++" to become "+--+".
Follow up:
Derive your algorithm's runtime complexity.
Solution: backtracking, recursion
public class Solution {
    public boolean canWin(String s) {
        if (s == null || s.length() < 2) {
            return false;
        }
        
        for (int i = 0; i < s.length() - 1; i++) {
            if (s.substring(i, i + 2).equals("++")) {
                if (canWin(s.substring(0, i) + "--" + s.substring(i + 2)) == false) {
                    return true;
                }
            }
        }
        
        return false;
    }
}

Thursday, December 3, 2015

LeetCode - 🐶

1. Min Stack
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
  • push(x) -- Push element x onto stack.
  • pop() -- Removes the element on top of the stack.
  • top() -- Get the top element.
  • getMin() -- Retrieve the minimum element in the stack.

2. Binary Tree Paths
Given a binary tree, return all root-to-leaf paths.
For example, given the following binary tree:
   1
 /   \
2     3
 \
  5
All root-to-leaf paths are:

["1->2->5", "1->3"]

3. Unique Word Abbreviation
An abbreviation of a word follows the form <first letter><number><last letter>. Below are some examples of word abbreviations:
a) it                      --> it    (no abbreviation)

     1
b) d|o|g                   --> d1g

              1    1  1
     1---5----0----5--8
c) i|nternationalizatio|n  --> i18n

              1
     1---5----0
d) l|ocalizatio|n          --> l10n
Assume you have a dictionary and given a word, find whether its abbreviation is unique in the dictionary. A word's abbreviation is unique if no other word from the dictionary has the same abbreviation.
Example: 
Given dictionary = [ "deer", "door", "cake", "card" ]

isUnique("dear") -> false
isUnique("cart") -> true
isUnique("cane") -> false
isUnique("make") -> true

4. Summary Ranges
Given a sorted integer array without duplicates, return the summary of its ranges.

For example, given [0,1,2,4,5,7], return ["0->2","4->5","7"].

5. Strobogrammatic number
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Write a function to determine if a number is strobogrammatic. The number is represented as a string.
For example, the numbers "69", "88", and "818" are all strobogrammatic.

6. Valid Parentheses
Given a string containing just the characters '('')''{''}''[' and ']', determine if the input string is valid.
The brackets must close in the correct order, "()" and "()[]{}" are all valid but "(]" and "([)]" are not.

Given a non-negative number represented as an array of digits, plus one to the number.
The digits are stored such that the most significant digit is at the head of the list.

Given a non-empty binary search tree and a target value, find the value in the BST that is closest to the target.
Note:
  • Given target value is a floating point.
  • You are guaranteed to have only one unique value in the BST that is closest to the target.

Given a string, determine if a permutation of the string could form a palindrome.
For example,
"code" -> False, "aab" -> True, "carerac" -> True.
Hint:
  1. Consider the palindromes of odd vs even length. What difference do you notice?
  2. Count the frequency of each character.
  3. If each character occurs even number of times, then it must be a palindrome. How about character which occurs odd number of times?

There is a fence with n posts, each post can be painted with one of the k colors.
You have to paint all the posts such that no more than two adjacent fence posts have the same color.
Return the total number of ways you can paint the fence.
Note:
n and k are non-negative integers.

You are playing the following Flip Game with your friend: Given a string that contains only these two characters: + and -, you and your friend take turns to flip twoconsecutive "++" into "--". The game ends when a person can no longer make a move and therefore the other person will be the winner.
Write a function to compute all possible states of the string after one valid move.
For example, given s = "++++", after one move, it may become one of the following states:
[
  "--++",
  "+--+",
  "++--"
]
If there is no valid move, return an empty list [].

Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.
Calling next() will return the next smallest number in the BST.
Note: next() and hasNext() should run in average O(1) time and uses O(h) memory, where h is the height of the tree.

Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?

Implement an iterator to flatten a 2d vector.
For example,
Given 2d vector =
[
  [1,2],
  [3],
  [4,5,6]
]
By calling next repeatedly until hasNext returns false, the order of elements returned by next should be: [1,2,3,4,5,6].
Hint:
  1. How many variables do you need to keep track?
  2. Two variables is all you need. Try with x and y.
  3. Beware of empty rows. It could be the first few rows.
  4. To write correct code, think about the invariant to maintain. What is it?
  5. The invariant is x and y must always point to a valid point in the 2d vector. Should you maintain your invariant ahead of time or right when you need it?
  6. Not sure? Think about how you would implement hasNext(). Which is more complex?
  7. Common logic in two different places should be refactored into a common method.
Follow up:
As an added challenge, try to code it using only iterators in C++ or iterators in Java.

15. Flip Game II
You are playing the following Flip Game with your friend: Given a string that contains only these two characters: + and -, you and your friend take turns to flip two consecutive "++" into "--". The game ends when a person can no longer make a move and therefore the other person will be the winner.
Write a function to determine if the starting player can guarantee a win.
For example, given s = "++++", return true. The starting player can guarantee a win by flipping the middle "++" to become "+--+".
Follow up:
Derive your algorithm's runtime complexity.

A peak element is an element that is greater than its neighbors.
Given an input array where num[i] ≠ num[i+1], find a peak element and return its index.
The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.
You may imagine that num[-1] = num[n] = -∞.
For example, in array [1, 2, 3, 1], 3 is a peak element and your function should return the index number 2.
Note:
Your solution should be in logarithmic complexity.

Given two integers representing the numerator and denominator of a fraction, return the fraction in string format.
If the fractional part is repeating, enclose the repeating part in parentheses.
For example,
  • Given numerator = 1, denominator = 2, return "0.5".
  • Given numerator = 2, denominator = 1, return "2".
  • Given numerator = 2, denominator = 3, return "0.(6)".

According to the Wikipedia's article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970."
Given a board with m by n cells, each cell has an initial state live (1) or dead (0). Each cell interacts with its eight neighbors (horizontal, vertical, diagonal) using the following four rules (taken from the above Wikipedia article):
  1. Any live cell with fewer than two live neighbors dies, as if caused by under-population.
  2. Any live cell with two or three live neighbors lives on to the next generation.
  3. Any live cell with more than three live neighbors dies, as if by over-population..
  4. Any dead cell with exactly three live neighbors becomes a live cell, as if by reproduction.
Write a function to compute the next state (after one update) of the board given its current state.
Follow up
  1. Could you solve it in-place? Remember that the board needs to be updated at the same time: You cannot update some cells first and then use their updated values to update other cells.
  2. In this question, we represent the board using a 2D array. In principle, the board is infinite, which would cause problems when the active area encroaches the border of the array. How would you address these problems?

Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],...] (si < ei), find the minimum number of conference rooms required.
For example,
Given [[0, 30],[5, 10],[15, 20]],
return 2.

20.