Monday, November 23, 2015

3Sum Smaller

Given an array of n integers nums and a target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
For example, given nums = [-2, 0, 1, 3], and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
Solution: run time complexity is O(n^3), constant space.
public class Solution {
    public int threeSumSmaller(int[] nums, int target) {
        if (nums == null || nums.length < 3) {
            return 0;
        }
        
        int count = 0;
        for (int i = 0; i < nums.length - 2; i++) {
            for (int j = i + 1; j < nums.length - 1; j++) {
                for (int k = j + 1; k < nums.length; k++) {
                    if (nums[i] + nums[j] + nums[k] < target) {
                        count++;
                    }
                }
            }
        }
        return count;
    }
}
Follow up: run time complexity is O(n^2), constant space.
public class Solution {
    public int threeSumSmaller(int[] nums, int target) {
        if (nums == null || nums.length < 3) {
            return 0;
        }
        
        Arrays.sort(nums);
        int count = 0;
        for (int i = 0; i < nums.length - 2; i++) {
            int left = i + 1;
            int right = nums.length - 1;
            while (left < right) {
                if (nums[i] + nums[left] + nums[right] < target) {
                    count = count + right - left;  // 一共有从right->left种情况
                    left++;
                } else {
                    right--;
                }
            }
        }
        return count;
    }
}

No comments:

Post a Comment