Given an array of n integers nums and a target, find the number of index triplets
i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums =
[-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1] [-2, 0, 3]
Follow up:
Could you solve it in O(n2) runtime?
Could you solve it in O(n2) runtime?
Solution: run time complexity is O(n^3), constant space.
public class Solution { public int threeSumSmaller(int[] nums, int target) { if (nums == null || nums.length < 3) { return 0; } int count = 0; for (int i = 0; i < nums.length - 2; i++) { for (int j = i + 1; j < nums.length - 1; j++) { for (int k = j + 1; k < nums.length; k++) { if (nums[i] + nums[j] + nums[k] < target) { count++; } } } } return count; } }
Follow up: run time complexity is O(n^2), constant space.
public class Solution { public int threeSumSmaller(int[] nums, int target) { if (nums == null || nums.length < 3) { return 0; } Arrays.sort(nums); int count = 0; for (int i = 0; i < nums.length - 2; i++) { int left = i + 1; int right = nums.length - 1; while (left < right) { if (nums[i] + nums[left] + nums[right] < target) { count = count + right - left; // 一共有从right->left种情况 left++; } else { right--; } } } return count; } }
No comments:
Post a Comment