Given an array of n integers where n > 1,
nums
, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Solve it without division and in O(n).
For example, given
[1,2,3,4]
, return [24,12,8,6]
.
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
Solution1: run time complexity is O(n), space complexity is O(n).
res = [n2*n3*n4, n1*n3*n4, n1*n2*n4, n1*n2*n3], 相当于a1 = [1, n1, n1*n2, n1*n2*n3]和
a2 = [n2*n3*n4, n3*n4, n4, 1]相乘
public class Solution { public int[] productExceptSelf(int[] nums) { int[] res = new int[nums.length]; int[] a1 = new int[nums.length]; int[] a2 = new int[nums.length]; a1[0] = 1; a2[nums.length - 1] = 1; // scan from left to right -> a1 = [1, n1, n1*n2, n1*n2*n3] for (int i = 0; i < nums.length - 1; i++) { a1[i + 1] = nums[i] * a1[i]; } // scan from right to left -> a2 = [n2*n3*n4, n3*n4, n4, 1] for (int i = nums.length - 1; i > 0; i--) { a2[i - 1] = nums[i] * a2[i]; } // multiply -> res = [n2*n3*n4, n1*n3*n4, n1*n2*n4, n1*n2*n3] for (int i = 0; i < nums.length; i++) { res[i] = a1[i] * a2[i]; } return res; } }
Solution2: run time complexity is O(n), constant space.
用一个temp来保存每次的结果。public class Solution { public int[] productExceptSelf(int[] nums) { int[] res = new int[nums.length]; res[0] = 1; int temp = 1; for (int i = 1; i < nums.length; i++) { temp = temp * nums[i - 1]; res[i] = temp; } temp = 1; for (int i = nums.length - 2; i >= 0; i--) { temp = temp * nums[i + 1]; res[i] *= temp; } return res; } }
No comments:
Post a Comment