Solution:
"假设把矩阵沿着某一行切下来,然后把切的行作为底面,将自底面往上的矩阵看成一个直方图。直方图的中每个项的高度就是从底面行开始往上1的数量。根据Largest Rectangle in Histogram我们就可以求出当前行作为矩阵下边缘的一个最大矩阵。接下来如果对每一行都做一次Largest Rectangle in Histogram,从其中选出最大的矩阵,那么它就是整个矩阵中面积最大的子矩阵。
然而在这里我们会发现一些动态规划的踪迹,如果我们知道上一行直方图的高度,我们只需要看新加进来的行(底面)上对应的列元素是不是0,如果是,则高度是0,否则则是上一行直方图的高度加1。"
Run time complexity is O(m * n), space complexity is O(n).
Reference: http://blog.csdn.net/linhuanmars/article/details/24444491
public class Solution { public int maximalRectangle(char[][] matrix) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return 0; } int[] height = new int[matrix[0].length]; int maxArea = 0; for (int i = 0; i < matrix.length; i++) { for (int j = 0; j < matrix[0].length; j++) { height[j] = matrix[i][j] == '0' ? 0 : height[j] + 1; } maxArea = Math.max(maxArea, largestArea(height)); } return maxArea; } public int largestArea(int[] height) { if (height == null || height.length == 0) { return 0; } int max = 0; Stackstack = new Stack (); for (int i = 0; i < height.length; i++) { while (!stack.isEmpty() && height[i] <= height[stack.peek()]) { int index = stack.pop(); int curArea = stack.isEmpty() ? height[index] * i : height[index] * (i - stack.peek() - 1); max = Math.max(max, curArea); } stack.push(i); } while (!stack.isEmpty()) { int index = stack.pop(); int curArea = stack.isEmpty() ? height[index] * height.length : height[index] * (height.length - stack.peek() - 1); max = Math.max(max, curArea); } return max; } }
No comments:
Post a Comment