Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0.
A solution set is:
(-1, 0, 0, 1)
(-2, -1, 1, 2)
(-2, 0, 0, 2)
Solution1:
A typical k-sum problem. Time is N to the poser of (k-1).
Run time complexity is O(n^3), solution based on 3sum
the efficiency of the best solution for m sum is O(n^(m-1))
public class Solution {
public ArrayList> fourSum(int[] num, int target) {
ArrayList> result = new ArrayList>();
HashSet> check = new HashSet>();
Arrays.sort(num);
if(num.length < 4)
return result;
for(int i = 0; i < num.length; i++) {
//3 sum
for(int j = i + 1; j < num.length; j++) {
int start = j + 1;
int end = num.length - 1;
//2 sum
while(start < end) {
int sum = num[i] + num[j] + num[start] + num[end];
ArrayList temp = new ArrayList();
if(sum == target) {
temp.add(num[i]);
temp.add(num[j]);
temp.add(num[start]);
temp.add(num[end]);
if(!check.contains(temp)) {
result.add(temp);
check.add(temp);
}
start++;
end--;
}else if(sum < target) {
start++;
}else {
end--;
}
}
}
}
return result;
}
}
No comments:
Post a Comment