Follow up for problem "Populating Next Right Pointers in Each Node".
What if the given tree could be any binary tree? Would your previous solution still work?
Note:
- You may only use constant extra space.
For example,
Given the following binary tree,
Given the following binary tree,
1
/ \
2 3
/ \ \
4 5 7
After calling your function, the tree should look like:
1 -> NULL
/ \
2 -> 3 -> NULL
/ \ \
4-> 5 -> 7 -> NULL
Solution1: recursion
/**
* Definition for binary tree with next pointer.
* public class TreeLinkNode {
* int val;
* TreeLinkNode left, right, next;
* TreeLinkNode(int x) { val = x; }
* }
*/
public class Solution {
public void connect(TreeLinkNode root) {
if(root == null)
return;
if(root.left != null) {
if(root.right != null) //如果右子树不为空,左子树连右子树
root.left.next = root.right;
else {
TreeLinkNode p = root.next;
while(p != null && p.left == null && p.right == null) { //如果左右子树为空,找下一个有子树的node
p = p.next;
}
if(p != null) {
if(p.left != null) {
root.left.next = p.left;
}else if(p.left == null && p.right != null) {
root.left.next = p.right;
}
}
}
}
if(root.right != null) {
TreeLinkNode p = root.next;
while(p != null && p.left == null && p.right == null) {
p = p.next;
}
if(p != null) {
if(p.left != null) {
root.right.next = p.left;
}else if(p.left == null && p.right != null) {
root.right.next = p.right;
}
}
}
connect(root.right);
connect(root.left);
}
}
Solution2: iteration. 横着连就是 level order traversal. 通常使用BFS,但是题目中每个node自带next指针,相当于就是自带Queue了。所以,从上向下一层一层的连接即可。
每层: a. 记录下一层的开始点 b. 连接各个Nodes.
时间复杂度和空间复杂度不变,还是O(n)和O(1).
时间复杂度和空间复杂度不变,还是O(n)和O(1).
/**
* Definition for binary tree with next pointer.
* public class TreeLinkNode {
* int val;
* TreeLinkNode left, right, next;
* TreeLinkNode(int x) { val = x; }
* }
*/
public class Solution {
public void connect(TreeLinkNode root) {
if(root == null)
return;
while(root != null) {
TreeLinkNode levelStart = null;
TreeLinkNode pre = null;
for(; root != null; root = root.next) {
if(levelStart == null) {
if(root.left != null)
levelStart = root.left;
else if(root.left == null && root.right != null)
levelStart = root.right;
}
if(root.left != null) {
if(pre != null)
pre.next = root.left;
pre = root.left;
}
if(root.right != null) {
if(pre != null)
pre.next = root.right;
pre = root.right;
}
}
root = levelStart;
}
}
}
No comments:
Post a Comment