Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
- Only one letter can be changed at a time
- Each intermediate word must exist in the dictionary
For example,
Given:
start =
end =
dict =
start =
"hit"
end =
"cog"
dict =
["hot","dot","dog","lot","log"]
As one shortest transformation is
return its length
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
,return its length
5
.
Note:
- Return 0 if there is no such transformation sequence.
- All words have the same length.
- All words contain only lowercase alphabetic characters.
用图的方法。我们先给题目进行图的映射,顶点则是每个字符串,然后两个字符串如果相差一个字符则我们进行连边。接下来看看这个方法的优势,注意到我们的字符集只有小写字母,而且字符串长度固定,假设是L。那么可以注意到每一个字符可以对应的边则有25个(26个小写字母减去自己),那么一个字符串可能存在的边是25*L条。接下来就是检测这些边对应的字符串是否在字典里,就可以得到一个完整的图的结构了。根据题目的要求,等价于求这个图一个顶点到另一个顶点的最短路径,一般我们用广度优先搜索(不熟悉搜索的朋友可以看看Clone Graph)即可。这个算法中最坏情况是把所有长度为L的字符串都看一下,或者把字典中的字符串都看一下,而长度为L的字符串总共有26^L,所以时间复杂度是O(min(26^L, size(dict)),空间上需要存储访问情况,也是O(min(26^L, size(dict))。
public class Solution { public int ladderLength(String start, String end, Setdict) { if(dict.size() == 0) return 0; LinkedList curWord = new LinkedList (); LinkedList count = new LinkedList (); curWord.add(start); count.add(1); while(!curWord.isEmpty()) { String cur = curWord.pop(); Integer step = count.pop(); if(cur.equals(end)) { return step; } for(int i = 0; i < cur.length(); i++) { char[] charInCur = cur.toCharArray(); for(char c = 'a'; c <= 'z'; c++) { charInCur[i] = c; String newWord = new String(charInCur); if(dict.contains(newWord)) { curWord.add(newWord); count.add(step + 1); dict.remove(newWord); } } } } return 0; } }
No comments:
Post a Comment