Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)Solution:
Note: 求和问题总结 http://tech-wonderland.net/blog/summary-of-ksum-problems.html
Use two pointers. First sort the array, and then from left to right, for each num[i], search the pair that sums up to -num[i] using Two Sum algorithm.
Run time complexity is O(n^2), constant space.
public class Solution { public ArrayList> threeSum(int[] num) { ArrayList > result = new ArrayList >(); Arrays.sort(num); if(num.length < 3) return result; for(int i = 0; i < num.length - 2; i++) { if(i == 0 || num[i] > num[i - 1]) { int x = -num[i]; int start = i + 1; int end = num.length - 1; while(start < end) { ArrayList temp = new ArrayList (); if(num[start] + num[end] == x) { temp.add(num[i]); temp.add(num[start]); temp.add(num[end]); result.add(temp); start++; end--; while(start < end && num[start] == num[start - 1]) { start++; } while(start < end && num[end] == num[end + 1]) { end --; } }else if(num[start] + num[end] > x) { end--; }else start++; } } } return result; } }
No comments:
Post a Comment