Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4},
A solution set is:
(-1, 0, 1)
(-1, -1, 2)
Solution:Note: 求和问题总结 http://tech-wonderland.net/blog/summary-of-ksum-problems.html
Use two pointers. First sort the array, and then from left to right, for each num[i], search the pair that sums up to -num[i] using Two Sum algorithm.
Run time complexity is O(n^2), constant space.
public class Solution {
public ArrayList> threeSum(int[] num) {
ArrayList> result = new ArrayList>();
Arrays.sort(num);
if(num.length < 3)
return result;
for(int i = 0; i < num.length - 2; i++) {
if(i == 0 || num[i] > num[i - 1]) {
int x = -num[i];
int start = i + 1;
int end = num.length - 1;
while(start < end) {
ArrayList temp = new ArrayList();
if(num[start] + num[end] == x) {
temp.add(num[i]);
temp.add(num[start]);
temp.add(num[end]);
result.add(temp);
start++;
end--;
while(start < end && num[start] == num[start - 1]) {
start++;
}
while(start < end && num[end] == num[end + 1]) {
end --;
}
}else if(num[start] + num[end] > x) {
end--;
}else
start++;
}
}
}
return result;
}
}
No comments:
Post a Comment