Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set
A solution set is:
2,3,6,7 and target 7,A solution set is:
[7][2, 2, 3]
Solution: recursion
基本思路是先排好序,然后每次递归中把剩下的元素一一加到结果集合中,并且把目标减去加入的元素,然后把剩下元素(包括当前加入的元素)放到下一层递归中解决子问题。算法复杂度因为是NP问题,所以自然是指数量级的。
基本思路是先排好序,然后每次递归中把剩下的元素一一加到结果集合中,并且把目标减去加入的元素,然后把剩下元素(包括当前加入的元素)放到下一层递归中解决子问题。算法复杂度因为是NP问题,所以自然是指数量级的。
注意在实现中for循环中第一步有一个判断,那个是为了去除重复元素产生重复结果的影响,因为在这里每个数可以重复使用,所以重复的元素也就没有作用了,所以应该跳过那层递归。
public class Solution {
public ArrayList> combinationSum(int[] candidates, int target) {
ArrayList> result = new ArrayList>();
if(candidates == null || candidates.length == 0)
return result;
Arrays.sort(candidates); //sort the candidates first
int start = 0;
ArrayList list = new ArrayList();
select(candidates, target, start, list, result);
return result;
}
public void select(int[] candidates, int target, int start, ArrayList list, ArrayList> result) {
if(target < 0)
return;
if(target == 0) {
result.add(new ArrayList (list));
return;
}
for(int i = start; i < candidates.length; i++) {
if(i > 0 && candidates[i] == candidates[i - 1])
continue;
list.add(candidates[i]);
select(candidates, target-candidates[i], i, list, result);
list.remove(list.size() - 1);
}
}
}
No comments:
Post a Comment