Solution1: divide and conquer
类似于MergeSort的思路,就是分治法,是一个比较经典的O(nlogn)的排序算法. 思路是先分成两个子任务,然后递归求子任务,最后回溯回来。这个题目也是这样,先把k个list分成两半,然后继续划分,知道剩下两个list就合并起来,合并时会用到Merge Two Sorted Lists这道题.
假设总共有k个list,每个list的最大长度是n,那么运行时间满足递推式T(k) = 2T(k/2)+O(n*k)。可以算出算法的总复杂度是O(nklogk)。空间复杂度的话是递归栈的大小O(logk)。
分析链接:http://blog.csdn.net/linhuanmars/article/details/19899259
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode mergeKLists(ArrayList lists) {
if(lists == null || lists.size() == 0)
return null;
return helper(lists, 0, lists.size() - 1);
}
//divide
public ListNode helper(ArrayList lists, int left, int right) {
if(left < right) {
int mid = (left + right) / 2;
return merge(helper(lists, left, mid), helper(lists, mid+1, right));
}
return lists.get(left);
}
//merge, similar as merge two sorted lists
public ListNode merge(ListNode l1, ListNode l2) {
ListNode newHead = new ListNode(0);
newHead.next = l1;
ListNode cur = newHead;
while(l1 != null && l2 != null) {
if(l1.val < l2.val) {
l1 = l1.next;
}else {
ListNode next = l2.next;
cur.next = l2;
l2.next = l1;
l2 = next;
}
cur = cur.next;
}
if(l2 != null) {
cur.next = l2;
}
return newHead.next;
}
}
Solution2: priority queueThe simplest solution is using PriorityQueue. The elements of the priority queue are ordered according to their natural ordering, or by a comparator provided at the construction time (in this case).
用到了堆的数据结构heap。维护一个大小为k的堆,每次取堆顶的最小元素放到结果中,然后读取该元素的下一个元素放入堆中,重新维护好。因为每个链表是有序的,每次又是去当前k个元素中最小的,所以当所有链表都读完时结束,这个时候所有元素按从小到大放在结果链表中。
这个算法每个元素要读取一次,即是k*n次,然后每次读取元素要把新元素插入堆中要logk的复杂度,所以总时间复杂度是O(nklogk)。空间复杂度是堆的大小,即为O(k)。
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
public ListNode mergeKLists(ArrayList lists) {
if(lists == null || lists.size() == 0)
return null;
PriorityQueue heap = new PriorityQueue(10, new Comparator() {
@Override
public int compare(ListNode l1, ListNode l2) {
return l1.val - l2.val;
}
});
for(int i = 0; i < lists.size(); i++) {
ListNode node = lists.get(i);
if(node != null) {
//store the first node of every list
//heap are ordered by the comparator
heap.offer(node);
}
}
ListNode head = null;
ListNode pre = head;
while(heap.size() > 0) {
ListNode cur = heap.poll();
if(head == null) {
head = cur;
pre = head;
}else {
pre.next = cur;
}
pre = cur;
if(cur.next != null) {
heap.offer(cur.next); //store next element in this list into heap
}
}
return head;
}
}
No comments:
Post a Comment