Solution1: divide and conquer
类似于MergeSort的思路,就是分治法,是一个比较经典的O(nlogn)的排序算法. 思路是先分成两个子任务,然后递归求子任务,最后回溯回来。这个题目也是这样,先把k个list分成两半,然后继续划分,知道剩下两个list就合并起来,合并时会用到Merge Two Sorted Lists这道题.
假设总共有k个list,每个list的最大长度是n,那么运行时间满足递推式T(k) = 2T(k/2)+O(n*k)。可以算出算法的总复杂度是O(nklogk)。空间复杂度的话是递归栈的大小O(logk)。
分析链接:http://blog.csdn.net/linhuanmars/article/details/19899259
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { public ListNode mergeKLists(ArrayListSolution2: priority queuelists) { if(lists == null || lists.size() == 0) return null; return helper(lists, 0, lists.size() - 1); } //divide public ListNode helper(ArrayList lists, int left, int right) { if(left < right) { int mid = (left + right) / 2; return merge(helper(lists, left, mid), helper(lists, mid+1, right)); } return lists.get(left); } //merge, similar as merge two sorted lists public ListNode merge(ListNode l1, ListNode l2) { ListNode newHead = new ListNode(0); newHead.next = l1; ListNode cur = newHead; while(l1 != null && l2 != null) { if(l1.val < l2.val) { l1 = l1.next; }else { ListNode next = l2.next; cur.next = l2; l2.next = l1; l2 = next; } cur = cur.next; } if(l2 != null) { cur.next = l2; } return newHead.next; } }
The simplest solution is using PriorityQueue. The elements of the priority queue are ordered according to their natural ordering, or by a comparator provided at the construction time (in this case).
用到了堆的数据结构heap。维护一个大小为k的堆,每次取堆顶的最小元素放到结果中,然后读取该元素的下一个元素放入堆中,重新维护好。因为每个链表是有序的,每次又是去当前k个元素中最小的,所以当所有链表都读完时结束,这个时候所有元素按从小到大放在结果链表中。
这个算法每个元素要读取一次,即是k*n次,然后每次读取元素要把新元素插入堆中要logk的复杂度,所以总时间复杂度是O(nklogk)。空间复杂度是堆的大小,即为O(k)。
/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { public ListNode mergeKLists(ArrayListlists) { if(lists == null || lists.size() == 0) return null; PriorityQueue heap = new PriorityQueue (10, new Comparator () { @Override public int compare(ListNode l1, ListNode l2) { return l1.val - l2.val; } }); for(int i = 0; i < lists.size(); i++) { ListNode node = lists.get(i); if(node != null) { //store the first node of every list //heap are ordered by the comparator heap.offer(node); } } ListNode head = null; ListNode pre = head; while(heap.size() > 0) { ListNode cur = heap.poll(); if(head == null) { head = cur; pre = head; }else { pre.next = cur; } pre = cur; if(cur.next != null) { heap.offer(cur.next); //store next element in this list into heap } } return head; } }
No comments:
Post a Comment