Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
Note:可行的二叉查找树的数量是相应的卡特兰数.
算法上还是用求解NP问题的方法来求解,也就是N-Queens中介绍的在循环中调用递归函数求解子问题。思路是每次一次选取一个结点为根,然后递归求解左右子树的所有结果,最后根据左右子树的返回的所有子树,依次选取然后接上(每个左边的子树跟所有右边的子树匹配,而每个右边的子树也要跟所有的左边子树匹配,总共有左右子树数量的乘积种情况),构造好之后作为当前树的结果返回。
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; left = null; right = null; }
* }
*/
public class Solution {
public ArrayList generateTrees(int n) {
return helper(1, n);
}
public ArrayList helper(int start, int end) {
ArrayList res = new ArrayList();
if(start > end) {
res.add(null);
return res;
}
for(int i = start; i <= end; i++) {
ArrayList leftTree = helper(start, i - 1);
ArrayList rightTree = helper(i + 1, end);
for(int j = 0; j < leftTree.size(); j++) {
for(int k = 0; k < rightTree.size(); k++) {
TreeNode root = new TreeNode(i);
root.left = leftTree.get(j);
root.right = rightTree.get(k);
res.add(root);
}
}
}
return res;
}
}
No comments:
Post a Comment